Türk matematikçi. Kendi adıyla bilinen matematik kuramları ile dünya çapında tanınır.
Doktorasını yapmak için gittiği Almanyada, matematikçi Helmut Hasse ile birlikte önemli çalışmalar yapmıştır. Bu çalışmalar sonunda, matematikte Hasse-Arf Kuramı'nı geliştirdi. Arf değişmezi, Arf halkaları ve Arf kapanışlarıgibi kendi adıyla bilinen matematiksel terimleri bilim dünyasına kazandırdı.
Hasse-Arf Teoremi
Arf, matematik dünyasından “Hasse-Arf teoremi”yle tanındı. Sentetik geometri problemlerini cetvel ve pergeie çözülebilir olup olmadıklarına göre sınıflandırmayı tasarlayan Arf, yalnızca ikinci dereceden cebirsel denklemlere indirgenebilen problemlerin cetvel yardımıyla çözülebileceğini saptadı. Hasse’nin önerisi üzerine yaptığı çalışma sonucunda saptadığı değişmezlerin “Arf değişmezi” olarak terimleşmesi, matematik dünyasındaki ününü pekiştirdi.
Bugün "lokal" bir cisim ile, rank 1 ve diskret (yani kabaca Z-değerli) bir valuasiyona göre tam olan bir cisim anlıyoruz. p-adik sayı-cismi. Qp, bunun tipik bir örneğidir. Lokal cisimler teorisi, daha önce de belirtildiği gibi, H. Hasse tarafından çok efektif olarak kullanılmaya başlanmıştı. Ancak, o zamanki lokal cisimler teorisi, daha ziyade sayı-cisimleri ve (sonlu katsayılı) cebrik fonksiyon-cisimleri üzerine uygulanmak maksadıyla geliştirildiği için, daima kalan sınıf cisminin sonlu bir cisim olduğu kabul edilerek kurulmuş idi. Dolayısıyla, bu oldukça sınırlı şartın yerine daha genel bir şart altında bu teorinin kurulması çok arzu edilen bir husus idi. Herhalde onun içindir, Cahit Bey'in Göttingen'de Hasse ile yaptığı ilk görüşmede, Hasse ona hemen bu problemi doktora konusu olarak tavsiye etmiştir. Cahit Bey bu görüşmeden bir yıl sonra, doktora tezini bitirinceye kadar, kendisi bir daha hiç Hasse ile görüşmemiş . "Untersuchungen Über Reinverzweigte Erweiterungen Diskret bewerteter Perfekter Körper" adlı Cahit Bey'in tezinde, kalan sınıf cisminin sonlu olması şartı yerine daha çok genel bir şart altında lokal cisimler teorisi kurulmuştur. Bugün bu teori üzerine yazılan kitapların içeriği (örneğin J-P. Serre: Corps locaux (Hermann) kitabına bakınız) Cahit Bey'in tezinde şekillenmiştir diyebiliriz. Özelikle, bu tez içinde yer alan ve daha önce J. Herbrand tarafından incelenmiş olan yüksek mertebeden dallanma gruplarının indisleri ile ilgili Hasse Arf teoremi çok meşhurdur. Bu teorem, yukarıda belirtilen indisler arasında (dallanma gruplarının zinciri içinde) sıçramalara tekabül edenlerin tam sayılar olduğunu ifade etmekte olup, Arf'ın temsillerinin varlığının ispat için de kilit nokta teşkil ettiğinden ün kazanmıştır.
Böylece Cahit Bey, bir yıl gibi kısa bir zaman içinde mükemmel bir doktora tezi hazırlayarak, kendisinin olağan üstü kabiliyetini kanıtlamış oluyordu.
Arf Halkaları-Kapanışları
1945'lere gelindiğinde düzlem bir eğrinin herhangi bir kolundaki çokkat noktaların çokkatlılıklarının yalnız aritmetiğe ait bir yöntem ile nasıl hesaplanacağı iyi bilinmekteydi. Düzlem halde, algoritmanın başladığı sayılar eğri kolunun parametreli denklemlerinden bilinen bir kanuna göre elde ediliyordu. Genel durumda ise böyle bir sonuç henüz bulunamamıştı. Bu sıralarda İstanbulÕda Patrick du Val adında bir İngiliz matematikçi bulunuyordu. Du Val genel halde algoritmanın başladığı sayılara "karakter" adını vermiş ve eğrinin tüm geometrik özellikleri bilindiği zaman bu karakterlerin nasıl bulunacağını göstermişti. Bunun tersi de doğruydu: bu karakterler bilinirse eğrinin çokkatlılık dizisi, yani geometrik özellikleri de bulunabiliyordu. Burada açık kalan problem ise bir eğrinin parametreli denklemleri verildiğinde karakterlerini bulabilmek idi. Cevap düzlem eğriler için bilinmekte, ama yüksek boyutlu uzaylarda bulunan tekil eğriler için bilinmemekte idi. Ayrıca yüksek boyutlu bir uzayda tanımlanmış bir tekil eğrinin çokkatlılık özelliklerini, yani geometrik özelliklerini bozmadan en düşük kaç boyutlu uzaya sokulabileceği de bu problemle beraber düşünülen bir soru idi. Bu çeşit sorular, matematiksel bakış açısının temel problemi olan sınıflandırma probleminin eğrilere uygulanması bakımından son derece önemli ve zor sorulardır. Cahit Arf bu problemi 1945'te tamamıyla çözmüş ve tek boyutlu tekil cebirsel kolların sınıflandırılması problemini kapatmıştır. Bu sonucun zorluğu hakkında fikir elde edebilmek için düzgün varyetelerin sınıflandırılması probleminin bugüne kadar yalnız 1, 2 ve kısmen 3 boyutlu varyeteler için çözüldüğünü, tekilliklerin sınıflandırılması probleminin ise 1 boyutlu varyeteler, eğriler için Cahit Arf tarafından çözüldüğünü göz önüne almak gerekir. Cahit Arf bu problemi çözerken önemini gözlediği ve problemin çözümünde en önemli rolü oynadığını fark ettiği bazı halkalara "karakteristik halka" adını vermiş ve daha sonra gelen yabancı araştırmacılar bu halkalara "Arf halkaları" ve bunların kapanışlarına "Arf kapanışları" adını vermişlerdir. Bugün matematik literatüründe bu halkalar bu adları taşımaktadır. Cahit Arf'ın bu çalışması 1949'da Proceedings of London Mathematical Society dergisinde yayımlanmıştır.
Arf Değişmezi
Cahit Arf'ın matematik alanında yaptığı dünyaca kabul görmüş matematiksel değerdir. Cisimlerin kuadratik formlarının sınıflandırılması üzerine yaptığı çalışmada bulduğu formüldür